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Refractive index effects are examined for transient cooling by radiation and conduction of a gray semitrans-

parent layer. The layer is in a vacuum and so its heat loss is only by internal radiation leaving through its
boundaries. Emission within the layer and energy reflected internally from its boundaries increase with the

material refractive index. The reflected energy and heat conduction act to distribute energy across the layer

and partially equalize the transient temperature distributions. For some conditions significant temperature
gradients develop near the boundaries. The numerical solution method provides accurate transient temperature
distributions in these regions so that the predicted radiative losses are not in error. An implicit finite difference

procedure is used with nonunifi)rm space and time increments. The integrals for the local radiative source in
the energy equation are evaluated by Gaussian integration.

Nomenclature

a - absorption coefficient of layer, m

c = specific heat of radiating medium,

W. s/kg. K
D - thickness of radiating laver, m

E, ..... E, - exponential integral functions
k - thermal conductivity of layer, W/m-K

N - conduction-radiation parameter, k/&rT_D

n - refractive index of layer

q - heat flux, W/m-"
0 = dimensionless heat flux q/erT 4,

q, - radiative heat flow per unit area and time,
V¢/nl _

R - radiation source in energy equation

7" = absolute temperature, K

T, = temperature of surrounding
environment, K

T, - initial temperature of radiating layer, K

T,,, - integrated mean temperature, K
t - dimensionless temperature, T/T,
X - dimensionless coordinate, x/D

x - coordinate in direction across layer, m

e,,, = emittance of layer based on instantaneous

value of T,,,

F,,, - emittance for a layer at uniform

tcmperature
0 - time. s

K_, - optical thickness of layer, aD

p - density of radiating medium, kg/m':
reflectivitv at a surface

_r - Stefan-Boltzmann constant, W/m'-K _

r - dimensionless time, (4(rT_/tx'D)O

Subscripts

a. b, c. d = interfaces of layer, Fig. 1
i - initial condition: the ith x location

M the total number of X grid points
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n at the nth time increment

o = outgoing energy
ut = uniform temperature condition

Introduction

C ERAMIC components and coatings are being developed
for high-temperature applications in aircraft and auto-

motive engines. The materials are often subjected to transient
thermal conditions and may be partially transparent for ra-

diative transfer. Radiative transport within the material acts
in combination with heat conduction. The local volume emis-

sion within a material depends on the square of its refractive

index. Since refractive indices for ceramics are in the ap-

proximate range from 1.5 to 3, internal radiation fluxes can

be large and are strongly dependent on temperature level.

During a transient numerical solution, accurate instantaneous

temperature distributions must be obtained or solution in-

accuracy will increase as time advances. Two operations are

required. The radiative contribution surrounding each loca-
tion must be integrated to obtain the h)cal absorbed energ)'
within the medium: this was done with Gaussian integration.

The transient energy equation must then be solved using this
internal energy source that depends on position and time: an

implicit finite difference procedure was used with a nonuni-

form grid. Internal reflections have a large effect on the dis-

tribution of absorbed energy. The radiative boundary rela-

tions are developed to account for these reflections.

The stead)' and transient heat transfer behavior of single

and multiple plane layer geometries has been examined in the

literature for a variety of situations._ " A common boundary

condition is to have the absorbing-emitting material contained

between walls with specified temperatures. In the present

situation the radiating layer is cooled by exposure to a cold

environment, and so the layer boundary temperatures are
unknown functions of time. The environment is either a vac-

uum, or external convection is small: hence, there is no nleans

to remove energy from the laver surfaces by cxtcrnal con-

vection or conduction. Since the laver is semitransparent,

radiant emission from within its interior passes out through

its boundaries. Energy is conducted to the surface, hut cannot

be radiated exactly from the surface that has no volume. The

resulting conduction boundary conditions for the energy equa-
tion are a zero-temperature gradient at each surface.

For an optically thick la_,er the radiative loss through a

boundary is mostly from the 'Joh, nle close to the surface. TIle

transient temperature gradient can become large near a
boundary, but nlust go to zero at the boundary. The radiative
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loss can be significantly in error if the temperatures near the
boundary are inaccurate. The zero temperature gradient
boundary condition must be met by the numerical procedure.
If not, the solution will behave as if there is an additional

energy loss or gain at the boundary; this results in an accu-
mulative error in the overall heat balance during the transient
calculations.

In Ref. 5 a finite difference procedure was developed for
this type of transient for a material with a refractive index of
1. A nonuniform increment size was used to concentrate grid
points near the boundaries. Thin work is extended here to a
layer with a refractive index larger than 1; this requires in-
cluding effects of internal reflections at the boundaries.

The temperature throughout the layer is initially uniform.
As the transient begins, the regions near the boundaries cool
rapidly. This reduces the radiative loss since', unless the layer

is optically thin. much of the loss ix originating from the region

where temperature is reduced relative to the layer interior.

As cooling continues and the mean temperature decreases,
radiation is diminished and the relative effect of conduction

increases. Eventually this causes the temperature distribution

to become more uniform and emission approaches that of a

layer at uniform temperature.

Analysis

Energy Equation for Transient OMfling

A plane layer with thickness D (Fig. l), is composed of a

gray emitting, absorbing, and nonscattering medium that is

heat-conducting and has a refractive index larger than 1. The
laver is initially at uniform temperature 7", and is then phlced

in much cooler surroundings so thai energy is lost by radiation.

The layer is in a vacuum, or external convection is small, so

that radiation is the only means for energy loss. The stir-

rounding temperature is low enough that radiation from the

surroundings to the layer is neglected.

The transient energy equation is _

3 T a -"T 0q,
pc" aO = k ax: a._ (1)

where the gradient of the radiative flux is gi,,cn by ,<

hq,
-- = 4n'-a_rT%L O)
g_x

- 2a {q,,_.E2(ax) + q,,Eela(D x)]

+ n_a ,rT'(x*. 0)E,(al.t :_ xl) tt_.... (2)

The q,.,, and q .... are the diffuse fluxes m Fig. 1 that :ire
outgoing from the intermtl boundaries :is a result of surface

reflections. Thermal properties are assumed independent of

temperature.
For convenience, a dimensionless quantity R(X. r) is de-

fined as R(X, r) = {(O0,1DX), and so from Eq. (2) in diinen-
sionless form

R(X, r) _ n'-K,,t'(X, r)

KI) { ('t,,,,(r)E:(K,.¥) + (l<,,(r)F..lK,,(l - X)]

+ n:K. , t_(X *, r)E.(K.IA .... X[) dA....

The dimensionless energy equation is then

itl (_:t

-- = N--- R(X, r)
a r aX -"

(3)

(4)

Po \.

T, << T(x,O)

../ ql.t>

"_" qo.b

%

a,k

n_21

T(x,e)

= D

x=(

qi.¢

qo.¢

x=D

qo,d

Fig. I (;enmetr_, boundar._ conditions, and nomenclature for plane
layer.

Initial and Boundary Conditions

Initially. the layer is fit unifornl temperature, and so /IX.
Ill = I. Boundary conditions must be provided for heat con-
duction anti radiation. Radiation passes out of the hlycr from
within its volume" it is not emitted from the surface itself that

has no v()lnmc. Then, for a low convection or vacuum envi-

ronment, no energy is leaving from the planes of the surfaces.
and the ccmduction boundary condition is flt/iJX (I at X

(I and 1 for :ill r.

The radiation bound:try conditions fire developed in a nlan-

ner similar to Ref. 9 where steady-state temperatures were
obtained for a hcated hirer with n > 1. The boundary con-

ditions provide the fluxes O,,J, and {/,,, in t]q. 13). Using the
interface reflectivities, q,, ,, - P,,q, _.and q .... - p, q,, (see Fig.

1). The incident fluxes q,,, and q,, :ire obtained from the

energy reflected from the opposite boundary and attenuated

through the layer, and from energy emission within the laver.

These energy quantities fire obtained from the radiative flux

equation that is the integral (if Eq. (2). As detailed il1 Ref. 9

the c_,,,, and q,., :Ire gi%cn b',:

('_(r) + A,,(',(r) (Sa)
q,, ,,(r) 1 - A_,A,

(',(r) + A (',(r) 15hi
_,,,(r) - ] - /1,,/1<

where

,'l/, 2p,,E JKn) (5C)

A, - 2p, E,(K/,) {5d)

('l(r) 2tt'p_.Kn ,, I_IX. r)I:'.,(K.X ) dX (5c)

1

(k(r) 2n:t),K . J,,' t_(X, r)l:'.[Ko(t X)] d)( (5f)

Although this formuhition is general, t\)r the specific coin-

putations in this article symmetry gives Aj, - A. ('L - (',.

a nd O.... 0 ....
The numerie'al solution yields transieilt temperature distri-

butions. Some quantities (if hllcresl arc the transient mean

temperature, the instantaneous heat loss. and the transient

emittance of the layer. The instantaneous mean temperature
is obtained from

1 f nT,,,(#) = 7)-, T(v, Old.v

1

t,,,(r) JI<;t(X, r) dA"
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The instantaneous radiative flux leaving both sides of the layer

is equal to (1 - p,,)q,.,, + (1 - p,)q,., = [(1 - p,,)/p_,]q,,.,, +
[(1 - p,)/p,]q,. Using Eqs. (5a) and (5b). this yields

q ..... + q,,.,i 1 - Pt, C_ + AhC2
-- (],,,, + q,,,t --

°'T, 4 Pt, I - A,A,

1 - p, C: + A,C,
+ (7)

p, 1 - A_A,

To define a transient emittance the instantaneous mean

temperature is chosen as a meaningful characteristic temper-

ature. The instantaneous heat dissipation from both sides of

the layer is then 2e,,,(O)crT2,(O), so that

0,,,(¢) + O,,.,,t¢)
<,,(r) - (8a)

2t_,(z)

To check numerical accuracy the e,,,(r) is obtained by a second
method. The local temperature derivative with time is ob-

tained during the numerical solution from the finite difference

representation of Eq. (4). Then the emittance is found from

the energy balance 2_,,,(OhrT_,(O) = -poD dT,,,/dO. This
yields

2 ft itt
2,rT_, ao _ -- dX (8b)

which is compared with the G,(r) from Eq. (Sa). Excellent

agreement was obtained.

Some useful comparisons can be made by calculating results

using the simplifying assumption that the transient tempera-

ture distribution remains uniform across the layer. The emit-

tance for this case is called v,. and is derived in Ref. 10.
interface reflectivities are included to account fl_r internal

reflections, and Pt, = P, ==-P_,, is the same at the inside of
both boundaries

1 - 2EdK,)
<,, - n-'(l - p,,,) (9)

I - 2p,,,E_(KI,)

For e,,,(r) - v .... the integration from 1_,,({I) = 7", to T,,,(r)

of the heat balance given prior to Eq. (8b) yields

T.,(r)/T, = t.,{r) = (I + 4e.,r) L.... (10)

Then using q,,,(0) = G,r,T_,(O), the instantaneous energy flux

from a layer at uniform, but time varying, temperature is

q,,,(r}to'T a, = e.,(l + _e,,r) 4._ (11)

Numerical Solution Procedure

To derive a transient solution procedure for Eq. (4), the

method in Ref. 5 is further developed to include a refractive

index greater than 1. To advance in time, trapezoidal inte-

gration over a small ,.'xr gives the change in t in terms of
at/ar as

At = t,,, - t,, = --dr_-- +
' Or 2 L\_/ .... \arl,,

(12)

The second derivative at r + _,r. that corresponds to the

index n + 1, is written in terms of At and t at r (index n) by
the identity

( i_2t _ 321I,, t - t,,) act,, 3:At i_:t,,
] _ + ' + - + -- (13).... . fIX 2 iL_( 2 iL¥ 2 iL¥:

At each X the R(r + 3.r) - R,,+ j is expressed in terms of

R(r) - R,, by

t,,, -,,,I
R,, , = R,, + \at,l,, 'J

(14)

By substituting Eq. (4) into Eq. (12) and using Eqs. (13) and

(14). an equation for At = t,,, - t,, is obtained as

1+ T _-TN_..X,

= arIN(il2t']-\3X2], ' R,,] (15)

Since all terms in Eq. (15) are at the time corresponding

to the index n, this subscript is omitted in what follows. The

i subscript is used to specify the X location, where i - 1 at
X = 0, andi - Mat X = 1. Variable AXincrement sizes

are used across the layer, with AX, and AX; extending in

the negative and positive directions about each X,. The second

derivative in Eq. (15) is then represented as

it2t ) 2t,,,= ax,. (ax, + ±x, )

2I,

AX, +AX,

2It I
+ 1 -_ i < M (16)

AX, (AX,' + AX, )

Relations are now developed for obtaining At, at the grid

locations across the layer at time r,,. This gives the temper-
atures for all X, at r + Ar by using t,,., - t,, + At, at each

X,. Eq. (16) is substituted into Eq. (15) to give

ArN At, + l +
-ax, (ax; + ax, ) ' 5- \7,/,

ArN

] arN At,+ AX,' AX, At, - AX,' (AX,* + AX, ) '

( [ t
+ ,, ,]_.xx, l

(17a)

This applies at the interior points 2 e_ i _ M - 1. To account

for the zero temperature derivative at each boundary. Eq.
{17a) has a special form obtained by, letting the temperature

at a mirror image grid point be equal to the value at the first

grid point away from the boundary. Then for i = 1, Eq. ( 17a}
Is modified by having the value at the fictitious point i = ()

be t. = t2, and letting AX, - A.V, _. This gives for i - I,

and similarly for i - M

[I+T 7 ,+(ax;)3"x_'

a_ [ 'N R,]
= L_ {:_ - t,) - J

ArN

(AX; )"
_t.

(17b)

(17c)
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Equations ( 17a- 17c) provide a tridiagonal array for ,._t, . . .

At_

[: ]r ]F1".. ".. "..

a_1 by L At,, L %1_j

where

_11

(IN)

A 7N
_.2: i : M - 1

AX, (AX/ + AA, t

A r N

a u = _(_Amwt,

b, l + _ \at/, (AXI)'

Ar aR) At,.%'b, = 1 + _-(_-t + (AA',_X.
r

2":i<M-I

Ar (OR 1 3T.,V
h,, = l + _-x.i_// (_X,,t'

('t --

c, (AX _):

ArN
2- i- M- 1

AX,' (AX/ + AA', )

[
2N ]._, = .XT[_ (I, -- t,) - R,

{ [ , )2N t,. /,3X' + AX,

2N ].+. = arL(aX,,yu,, , .,) 1?,,

The #R/i_I is needed at each ,V, for the h, coefficients. Using

R(X, r) in Eq. (3), i_R, OI!_ = (aRi_r[_)(ari_ri_L which gives

ORat A = 4n:Knt'(X, r)

d_j,,, (v) )
K,, ('d4,,,,(T) E,(,,,,x) + -- _:4_-,,(1 - X)l
2 \ dr dr

where

d('j(r)

dT -_ iJt(A',r)-- - Snp,,_,-,,_, t_(X.7) ._ K,(_:/,A' ) dA

d(',17)

0T
---_II'[IKDtl][;(}{',T) _t[('}('T)

. fir

l!:[K,,(I X)] dX

The tridiagonal array in Eq. (18) in solved using the well-

known algorithm. _t_: The &t, at each X, is added to each t,
value It) tldvHllce to the next time increment.

To evaluate R(X) and i_R,'at] _ in the matrix coefficients

requires an accurate integration method. Since E_(il) - z.

special treatment is needed an X _ approaches X. The integral
of E, in K,. and E.(ll) - 1. and so thc integration in eval-

uated analytically for aver'.+ small region near the singularity

with t _ or t' equal to its value at X. This is shown in Ref. 4

to provide accurate results. (;ausnian integration in used for

the integrations awa_ from the singularity. Values of the func-

tions at the unevenly spaced points in the (;aussian subroutine
were obtained from the grid point values tw cubic npline in-

terpolation. By, trying various numbers of grid points it wan
found that 511 A,k" increments across the h, ver gave accurate

results. The increment size was small adiacent to each bound-
arv where 10 increments wilh _,_," tl.tll were used. A ',ar-
iai_lc time incl-CllleUt _Viln used with the Ar - ().lilt5 or (1.0025

initiallY, and then gradually increased during the calculation

as the rate of temperature change decreased.

Results and Discussion

Transient Temperature Distributions

The nolution yields transient temperatures starting from an

initialh' uniform temperature. Typical temperature distribu-
tions are in Figs. 2a 2c for optical thicknesses _:_, - 2.5. and
20. These results, arc for the limit of zero heat conduction

N - 1), and no they show the maxinmm influence of radiation

during transient cooling. From svmmetr,,, onh half ot the
laver is shmvn. [:ach part of Fig..2 +-given te,nperaturc profiles

at three dimensionless times during the transient. For each

time the three temperature distributions show the effect of
refractive index for _ - 1, 1.5. and 2. The horizontal dot-

dash line at each time is computed from Eq. (l()). It in the
temperature ol_tained b_ assuming the temperature prolile

remain.,, tmitorm w'ith X, bt, t is a function of time throughout

the transient. The v,, used in Et t. (10) for a laver at unitorm

temperature in a function of refractive index and optical thick-

ness as given b', I:+q. (9) and Table 1. The O,,, in Eq. (9) in a

iU( A' . T) I
I:,1_,,IX+ - ,¥1) dA'_}

+ 4n:K;, , t'(A "+, r) ;;_ /
(19)

at(X, r)

The at(X, r)/ar is obtained during the solution from the finite

difference representation of Eq. (4). Thc derivatives of 0,,_,

and q,,, in Eq. (19} are evahtated from relations in Eq. (5).

This gives

d('_(rt d('.lr)
-- + ,4.--

dq,,;,(r) dr dr

dr 1 - A,A. (211)

d('.(rt d(+llr)
--+A --

d+t,,,lr) dr dr

dr 1 A,+A+

function of. gixen b_ the Fresncl relatitmn in Ref. 9: the dot-

dashlincs in Fig. 2arc forn _ 1.5.

The la'+er is mitialh' al uniforn+ temperature 1",. When the

transient begin,,, the laver is subiected to cold surroundings
[T, << 1,) and the outer portions cool more rapidly than the

interior. For a small optical thickness as in Fig. 2a, the mm-
sient temperature profiles are fairly unilorm and the results

using the unifi_na temperature assunlption provide _.tn ap-

proximation for the transient temperature level. When the

optical thickness is large as in Fig. 2c, the profilen have a large

variation across the laver, and with N - 0 the temperatures

near each boundary change rapidly with X.
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Table I Emittance values for a layer at uniform temperature, _'.,(n, K;,)

n K;,- 1 K;, 2 K;, 5 K;,- IH ,,,.';, 2(I

1 0.7806 09397 tl,9982 1.0tHI(I 1.1)01)(I

1.5 (1.8157 0.8853 0.9070 0.9082 O.t)lhS2

2 11.7927 0.8283 (I.8391 0.8394 I).S3'44

2.5 11.7518 0. 7720 0. 7780 0.77S I I), 77S 1

3 (I.71178 0.7201 0.7237 (I.7238 I).723S

1.01,0 . i i _ t

I '4=0

_= ..............n_ n

5

o. g ,-g
v

2 0.8
o - 1.0

,i
0. 7 /'_,( s

2.5

o. 6 _7 ..... i:g........

/'C';5 _o I----
KO=2 ...... Tu,(.r)/T I

0.5 ' ' ' _ ' ,
0.0 0.1 0.2 0.3 0.4 0.5

a) Dimensionless coordinate, X = x/D

l. 0 '_- 'r=O' ' n'

i--

"7"0. 9 ................... - -

t

0.8

E - ".................. C_ .........

0.7 I

.__
_- o. 6 ..................... iTS.........

...... ( )/T,

O, 5 , £ , _ , I , I ,
O. 0.1 0.2 0.3 0.4 O.

b) Dimensionless coordinate, X = x/D

1.0

x"

q;

oa

i::S

0.0 O. I 0.2 0.3 0.4 O.

C) Dimensionless coordinate, X = x/D

Fig. 2 Effect of refractive index on transient temperature distribu-

lions in a layer for three optical thicknesses in the limit of zero heat

conduetiun N = 0. K. = at 2, b) 5, and ct 2(I.

%-
x"

d

2
E

E

.2

g
E

_5

a)

N

"r 0

0.9 '_

0.8 0

i

0.7 I

0 0.1- !

0.6[7- <o ;

n=l. 5

KO=5

0.5 , L , ,
0.0 0.1 0.2 0.5 0.4 0.5

Dimensionless coordinate, X = x/D

x"

o

E

o

.o
1,1

0
E

i5

b)

1.0

"" T=OT '_

o.2s _---_3.. 3

0.8

0. 7 __

0.6 _o

n=l. 5

,'CO=20
0.5 , J , ,

0.0 0.1 0.2 0.3 0.4 0. 5

Dimensionless coordinafe, X = x/D

Fig. 3 Effect of cunduction-radiatiun parameter on transien! tem-

perature distributions for a layer with refractive index n = !.5 and

two uptical thicknesses. K_, = a) 5 and b) 20.

The effect of refractive index is to make the profiles more

uniform as n is increased. B_V comparing results for n - l and
2 it is evident that thc refractive index can reduce the am-

plitude of the temperature variation bv a factor of 3 or 4. Tiffs
is attributed to internal reflections from the boundaries that

tend _o distribute energy across thc layer.

The effect of heat conduction on the temperature profiles
is shown in Fig. 3forn - 1.5. When there is heal conduction

(N > 0), the conditions of the present problem impose a zero

temperature gradient at each boundary, in Fig. 3a for _<;, -
5, a value of N = 0.1 provides enough heat conduction to

significantly reduce the temperature gradient in the region

near the boundary, and the amplitude of the temperature
distribution is reduced about ill half. Results for additional N

values are m Fig. 3b for a larger optical thickness. K_, - 211.

Except for very near the beginning o[ the transient, the pro-

files become rather uniform for N greater than about 0.3.
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Transient Mean Temperature

]'he transient mean temperature of the la'_er is in Fig. 4a
for zero conduction (N : (I). which shows the maximum

radiative effi:ct during transient cooling. Results are for three

optical thicknesses and various refractive indices. The lowest
ct, rve (labeled optimum) has the maximum possible cooling

rate: it is for a hhtck layer that is always at t,nifl_rm temper-

aturc. When Kn -- 2 the temperature profiles in Fig. 2a are

somewhat uniform. The cooling curve for n 1 in Fig. 4a is

above the optimum behavior because the laver is not thick

enough to act as a black laver. When n is increased there are

two effects. The external reflectivity of the boundaries is in-

creased that decreases the layer absorptance and, hence, its

emittance. The temperatures are also raised near the bound-

aries its the temperature profiles become ntore uniform: this

increases emission. Since the profiles for K_, - 2 are already
rather uniform, the first effect is dominating and there is a

decrease in cooling rate when n is increased from 1 to 2. For
Kt, = 20 (solid lines on Fig. 4a) the low temperatures near

the boundaries relative to the much higher interior temper-

atures during the transient (see Fig. 2c) reduce the cooling

effectiveness, and cooling is much slower than for the opti-

nlum case of a black layer at uniform temperature. Increasing

the refractive index mcrcases the cooling rate by making the

temperature profiles more unifoml. The effect of n is opposite

to that for K;, - 2.

For the results in Fig. 4b there is heat conduction with N

- II.l. ('ompared with N - O, the temperature profiles for

1. O0

0.95

0.90
I-

E

_- O. 85

o 0.80

x
E o. 75

g O. 70

z;

\ _+,

"<72"-
O+ 65 N--O • _. _. ""

Optimum -" _ _-

O. 60 , * ,
O. 0.4 0.8 1.2 1.6 2.0 2.4

a) Dimensionless time, r

1. O0 r , [

\ +iO. 95 o

+=-- \'_ --- +oi
"_ 0.90 k_ -- 2o !

,- o.

n

_- _" " """.\'_':-'- 2

:>2%-.';_' ._2
- "._>- ._'L_>_/-,
g O, 70 '"'_"\%_,3.0 0+,,

N=O. 1 2 _' "'_-_'_

O. 60 ' ' ....
O. 0 O+4 O+8 t.2 1.6 2.0 2.4
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Fig. 4 Effecl of refractive index and optical thickness on the transient

mean temperature of a layer during cooling: a) zero heat conduction,
N = 0 and b) eonduetion-radiatinn parameter, N = 0.1.

N - 0.1 are more uniform as in Fig. 3. Transient cooling is
enhanced as a result of increased temperatures near the

boundaries, and the curves in Fig. 4b move closer to the

optimum results. For these particular conditions the effect of
n decreases with increasing K_,. which is opposite to the be-

havior in Fig. 4a. When Kr, 20. there is very liltlc effect of
refractive index.

A way to present the transient variation in mean temper-

ature in more detail to provide quantitative information is by

forming a ratio of transient values with results when the tem-

perature rcntains spatially uniform throughout the transient

iT(r) independent of X]. This is the ratio "l_,(r)/T_.(r) of

values from Fig. 4a or 4b to those from Eq. (Ill). For con-

ditions where this ratio is close to one, Eq. (l(1) can be used

to calculate approximate transient mean temperatures. For

other conditions the ratio can be used in conjunction with

Eq. (10) to obtain accurate estimates of 1;,,(r). Since the ratio
extends over a inoderate range, values can be interpolated

for other values of the parameters. Results for Kt, 20 are
in Fig. 5. The ordinate is 1.{I for N ----, x-; for any finite N the

T,,(r) is always larger than T,,,(r). For a small optical thickness

the layer temperature distribution remains fairly uniform

throughout the transient. As a result, fl)r K_, - 5. a figure

similar to Fig. 5 shows that T,,(r) is a few percent above 7-.,(r).
unless n is less than 1.5 and N is less than (LI. }lento. for

K_, < 5. F-q. (l[I) can bc used in many instances to obtain

an approximation for the instantaneous mean temperature.

Similar results for K_, - 1() show that for N > II. 1 agreement

with Eq. (l(l) is within 5('_ for all n. For K,, 20 in Fig. 5.

the temperature ratio is close to one (within about 3_i ) for
N > 0.3.

Transient Heat I,oss

The instantaneous heal flux leaving the laver is m Fig. _

for the sante parameters as in Fig+ 4. The uppermost curves

in Figs. 6a and bb are for the optimum case of cooling a black

layer at uniform temperature throughout the transient. As

discussed for Fig. 4a. increasing n in Fig. ha, increases the

cooling rate when _, is large, but has the opposite effect when
_, is small. Fhc smallest transient emission is for un optically

thick laver withn - l, since the temperatures arc decreased

near the boundaries as a result of transient cooling. In Fig.

6b. for N - 0. l. the curves shift toward the optimum ct, rve

its heal conduction makes the temperature profiles more uni-
form. There ts _erv little effect of refractive index for K_,

10 and 20.
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perature distribution; effecl of refractive index and heal conduction

fur K. = 20.
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Fig. 6 Effecl of refractive index and optical thickness on the transient

heat loss from a layer during cooling: a) zero heat conduction, N =

0 and b) conduction-radiation parameter, N = 0.1.

The ordinate in Fig. 7 is the instantaneous heat loss from

the layer given as a ratio to the values for a spatially uniform,

but time varying, temperature as obtained from Eq. (11):

these results are for K_, = 211. Since values from Eq. ( 11) are

easily calculated, the q(r) can be readily obtained from the

ratios given and can be interpolated for other parameters.

During the early portion of the transient the rate of energy
loss is lower than for a layer with T(r) independent of X. As

time proceeds some of the ratios become a little larger than
1. This is because the mean temperature has decreased more

slowly than for the uniform temperature case. Late in the

transient the mean temperature is large enough that the heat

loss exceeds that reached for the spatially uniform tempera-

ture layer at that time.

Transienl Emittance

The transient emittance is the instantaneous heat flux ra-

dialed from one side of the layer divided by _rT),,(:). It is

calculated from values as in Figs. 4 and 6. Results for K_, :

20 and various n and N are in Fig. 8;. Since the layer tem-

perature is initially uniform, the emittance at r = 0 is _,,, in

Table | or Eq. (9). The curves in Fig. _ begin at these values.

For N--, _c conduction equalizes the temperature distribution

so that the emittance remains at f,,1 throughout the transient;

for N = l) there is radiation only. As the transient begins.

the temperatures decrease near the boundary and the emit-

tance decreases rapMly since the radiation loss is smaller than

1.1 i r ' i ,
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Fig. 7 Real loss from layer during transient cooling as compared

with Ihal for a layer cooling with a unifi;rm instantaneous tempera-

lure distribution; effect of refractive index and heat conduction fi)r

_,, = 20.
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Fig. 8 Transient emitlance of a layer during c(mling: effect of re-

fractive index and heat conduction fi)r K_, = 20.

that characteristic of the layer instantaneous mean tempera-

ture. As shown by the similarity solution in Ref. 7, for n -

1 and N = 0, the transient emittance decreases to a steady

value that depends on the layer optical thickness; the present
results show that this behavior remains valid for n > I. With

conduction present (N > 0), the temperature distribution

gradually becomes more uniform as the transient proceeds:

and as temperatures decrease, radiation becomes less impor-
tant and conduction begins to dominate. The transient emit-

tance then rises toward its initial value corresponding to a

uniform temperature laver.

Concluding Remarks

Transient solutions were obtained for a radiating and con-
ducting layer cooled by exposure to a cold vacuum environ-

ment. The layer has diffuse surfaces and a refractive index

larger than 1. A transient finite difference solution procedure

is used; computer times on a Crav X-MP are 2-3 rain for a

complete mmsient solution. Transient mean temperatures and

heat h)sses were compared with analytical results for a layer
at uniform temperature at any instant during the transient,

and with the optimum casc of a black layer at uniform, but

timewarying, temperature. There arc two effects of refractive

index. One is that internal reflections help distribute energy
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within the layer, which tends to nrakc the transient distri-

butions more uniform. Thin increases emission I_v preventing

low temperatures near the boundaries. ] Iowc_cr, t-cflcctions
from the boundaries also tend to contain radiation within the

laver that reduces cooling for a larger n. For optically thin

layers where the temperature distribution is already rather

uniform, the second effect dominates, and increasing n can

decrease the cooling rate. For larger optical thicknesses the

first effect is more important, and so increasing n augments

cooling b.v helping to prevent the transient temperatures from

becoming low near the boundaries.
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